

Axial Piston Variable Pump HP4VC Series: 0*

Closed circuits Size: 28/45/53 mL/r Rated pressure: 30 MPa Max. pressure: 35 MPa

Features

- Axial piston variable pump in swashplate design for hydrostatic drives in closed circuits
- The flow is proportional to the drive speed and displacement and is infinitely varied
- The output flow increases from zero to the maximum value as the swashplate swivels
- The flow direction changes when the swashplate is moved through the neutral position
- Various mutually compatible control options to provide diverse control and regulation functions
- Two pressure relief valves on each high-pressure side to prevent overload of hydrostatic drives (pump and motor)
- Pressure relief valve with boost function
- Integrated boost pump works as the boost and control pump
- Maximum boost pressure limited by integrated boostpressure relief valve
- With integrated power cut-off valve as standard

Contents

• Type Code
Product Structure05
Hydraulic Schematic Diagram05
Hydraulic Fluids06
Technical Data07
HD-Pilot Pressure Control
HW-Mechanical Servo Control09
EP-Electric Control with Proportional Solenoid 11
EZ-Electric Control with Switching Solenoid 12
High-Pressure Relief Valves
Dimensions, Size 28
Dimensions, Size 45/53
• Filtration
Connector for Solenoids
Installation instructions

ΗΥΤΕΚ

> Type Code

	А	В	D	Е	F	Н		J	К	Μ	Ν	Р	R	S	Т	U	V		Y
HP4VC							/	0*				С					Ρ	—	

Axial piston unit

-	Swashplate design, variable, for closed circuits	HP4VC

Displacement

A	Geometric displacement, in mL/r	28	45	53		
---	---------------------------------	----	----	----	--	--

Variable control

					28	45	53	
		Pilot pressure control	Without inlet filtration		0			HD1
		r not pressure control	With inlet filtration					HD3
		Mechanical servo						HW
			With neutral position switch		\bigcirc			HWL
				U=12V DC	0			HWO1
	Hydraulic		With brake valve, NO	U=24V DC				HWO2
	control		With hereber under NO	U=12V DC	0	0	0	HWC1
			With brake valve, NC	U=24V DC	0			HWC2
			With brake valve, NO	U=12V DC	0	0	0	HWO1L
В			&neutral position switch	U=24V DC	0	0	0	HWO2L
			With brake valve, NC	U=12V DC	0	0	0	HWC1L
			&neutral position switch	U=24V DC		0	0	HWC2L
			Without inlet filtration	U=12V DC				EP1
		With proportional solenoid	without iniet illitration	U=24V DC				EP2
		-	With inlet filtration	U=12V DC				EP3
	Electric		with the hitration	U=24V DC				EP4
	control	With owitching colors id	Without inlet filtration	U=12V DC	0			EZ1
		With switching solenoid		U=24V DC	0			EZ2
			Mith in lat filtration	U=12V DC	0	0	0	EZ3
			With inlet filtration	U=24V DC	0	0	0	EZ4

Pressure cut-off valve

		28	45	53	
D	Without pressure cut-off valve (without code)				
	With pressure cut-off valve(standard)	0			D

Stroke limiter

		28	45	53	
Е	Without mechanical stroke limiter (without code)				
	With mechanical stroke limiter, externally adjustable	0			М

HP4VC | Piston Pump

> Type Code

	А	В	D	Е	F	Н		J	Κ	М	Ν	Р	R	S	Т	U	V	Y
HP4VC							/	0*				С					Ρ	

Stroking chamber pressure port(X3/X4)

		28	45	53	
F	Without port X ₃ /X ₄ (without code)				
	With port X3/X4	—	_	_	Т

DA control valve

		28	45	53	
Н	Without DA control valve				1
	With DA control valve	—	_	_	2

Series

		28	45	53	
0	Series 0*				0*

Direction of rotation (viewed on drive shaft)

		28	45	53		
К	CW (right-hand)				R	
	CCW (left-hand)				L	

Sealing material

		28	45	53		
М	Nitrile rubber (NBR) seal, shaft seal in fluoroelastomer (FKM)				N	
	Nitrile rubber (NBR) seal, shaft seal in nitrile rubber (NBR)				Р	

Drive shaft

	Splined shaft ANSI B92	28	45	53		
N	1″ 15T 16/32DP	For single pump				S
		With connecting flange	\bigcirc			L
	1 1/4" 14T 12/24DP	For the 1st pump of a combination pump	\bigcirc			Т

Mounting flange

Б		28	45	53		
Г	SAE J744-101-2 (Β) (2*Φ15, Φ101.6h8, 9.5)				С	

Working ports (viewed on drive shaft)

	Ports at same side	28	45	53	
R	Suction port downwards, working port leftwards				10
	Suction port upwards, working port rightwards	0	0	0	13

HP4VC | Piston Pump

ΗΥΤΕΚ

> Type Code

	А	В	D	Е	F	Н		J	Κ	М	Ν	Р	R	S	Т	U	V	Y
HP4VC							/	0*				С					Ρ	

Boost pump and through drive

				28	45	53	
	Integrated boost pump	Without through drive					F00
		Flange SAE J 744-82-2(A)	Hub for splined shaft 5/8"9T 16/32DP				F01
		Flange SAE J 744-101-2(B)	Hub for splined shaft 7/8" 13T 16/32DP	•1)			F02
S			Hub for splined shaft 1" 15T 16/32DP	0			F04
		Without through drive					N00
	Without integrated boost	Flange SAE J 744-82-2(A)	Hub for splined shaft 5/8"9T 16/32DP				K01
	pump	Flange SAE J 744-101-2(B)	Hub for splined shaft 7/8" 13T 16/32DP	0			K02
			Hub for splined shaft 1" 15T 16/32DP	0			K04

High-pressure relief valve

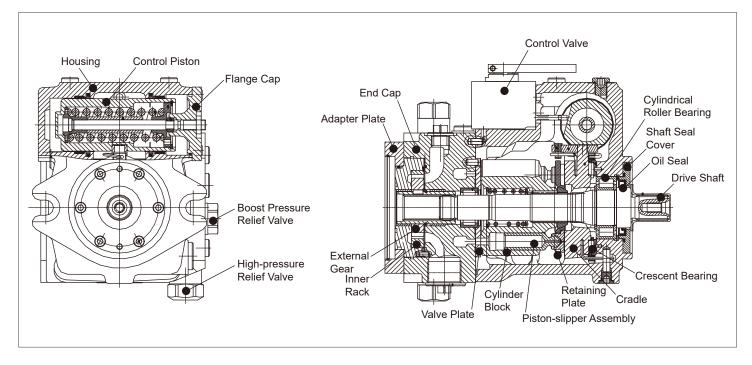
				28	45	53	
	With high-pressure relief valve, direct operated, fixed setting	35-45MPa	Without bypass valve	_		—	2
		25-35MPa	Without bypass valve				3
Т		10-25MPa	Without bypass valve				4
		25-35MPa	With bypass valve				5
		10-25MPa	With bypass valve				6
		35-45MPa	With bypass valve	_		_	7

Filtration

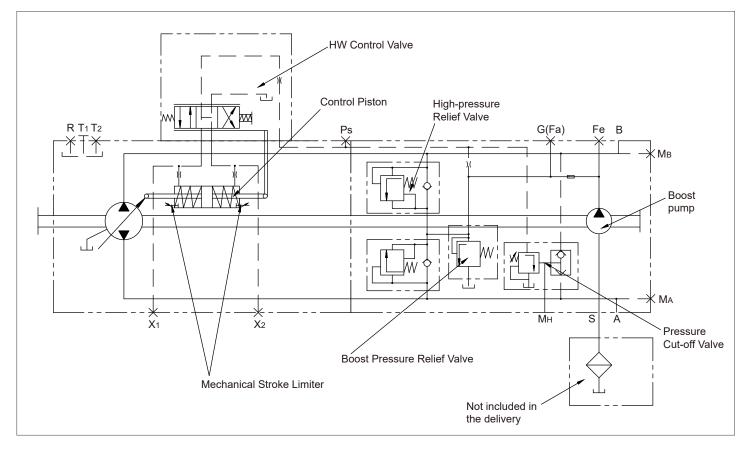
		28	45	53	
	External suction filter (not included in delivery, to be selected by customer)				S
0	External pressure filter (not included in delivery, to be selected by customer)				D
	External fluid supply (optional, only for N00, K**)				Е

Solenoid connector

	28	45	53	
DEUTSCH molded connector, 2-pin, without suppressor diode Connector model: Deutsch DT04-2p (for HWO/HWC/EP/EZ)	•	•	•	Р


Special configuration

		28	45	53	
Y	Without special configuration(without code)				
	Special configuration				***


1) Splined shaft 7/8"13T 16/32DP Only used for 13.8mL/r Boost pump

Preferred program
Available
On request
Not available

> Product Structure

> Hydraulic Schematic Diagram

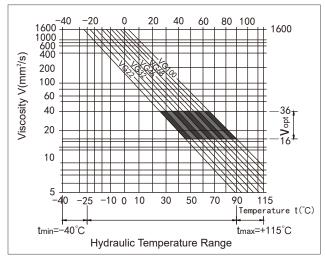
> Hydraulic Fluids

Mineral oil

Working Viscosity

In order for the optimum efficiency and service life, it is recommended to select the working viscosity at working temperature within the range below:

 V_{opt} = optimal working viscosity 16...36 mm²/s It is subject to the temperature of a closed circuit.


Limit Viscosity

Limit viscosity: Vmin=5mm²/s Short-term operation(t<3min) Permissible maximum temperature tmax=+115°C

Vmax=1600mm²/s

Short-term operation(t<3min) Cold start(p<3Mpa, n<1000rpm, tmin=-40 $^{\circ}$ C) Only for no-load start, it must reach the optimum working temperature in 15 min.

Selection Diagram

Instructions on Selection of Hydraulic Fluid

The working temperature dependent on the ambient temperature is required for correct selection of hydraulic fluid. It refers to the circuit temperature of a closed circuit and the reservoir temperature of an open circuit.

The hydraulic fluid should be so selected that the working viscosity in the working range is within the optimum range (V_{opt} , the shaded area on the selection diagram). The higher viscosity is recommended under the same conditions.

For example:

At an ambient temperature of X °C, the working temperature of the circuit is 60 °C. The viscosity within the optimum range (γ_{opt} ,shaded area) is VG46 or VG68 and the latter should be selected. Note:

The case drain temperature depends on the pressure and speed, and it is always higher than the circuit temperature. The temperature at any point within the system should not exceed +115 $^{\circ}$ C. Please contact us if the above condition cannot be maintained due to extreme working conditions.

Filtration

Finer filtration improves the cleanliness level of the hydraulic fluid, thus increasing the service life of the axial piston unit. To ensure normal operation of the axial piston unit, a cleanliness level of at least 20/18/15 according to ISO 4406 is to be maintained.

Based on the system and application, we recommend for HP4VC:

filter element β20 ≥ 100

 $\boldsymbol{\beta}$ should not decrease as differential pressure of the filter element increases.

When the hydraulic fluid has a high temperature (+90 $^{\circ}$ C to +115 $^{\circ}$ C), the cleanliness level should at least reach 19/17/14 according to ISO 4406. Please contact us if the above cleanliness level cannot be maintained.

Working Pressure Range

Input

Variable pump (with external fluid supply,E) : For EP, HW and HD controllers	
Boost pressure(n=2000rpm)Psp	=1.8MPa
For DG controller	
Boost pressure(n=2000rpm)Psp	=2.5MPa
Boost pump	
Suction pressure Ps min(V≤30mm ² /s)	≥0.08MPa
At short-term cold start(t<3min)	≥0.05MPa

Output

Variable pump:	
Pressure at port A or B	
Rated pressure PNX	35MPa
Max. pressure Pmax	40MPa
Total pressure(A+B)Pmax	60MPa
Boost pump	
Max. pressure Psp max	4MPa

Oil Seal

Permissible pressure load

The service life of the shaft seal depends on the pump speed and case drain pressure. It is recommended that the average lasting case drain pressure at working temperature is no greater than 0.3MPa absolute pressure (as the speed falls, the maximum permissible case drain pressure is 0.6MPa) and the short-term (t < 0.1s) permissible absolute pressure peak may reach 1MPa.

The service life of the shaft seal decreases with increasing frequency of pressure peaks.

The case pressure must be equal to or greater than the external pressure at the shaft seal.

Temperature range

The FKM shaft seal may be used for case temperatures from -25 $^\circ\text{C}$ to +115 $^\circ\text{C}.$

The NBR shaft seal may be used for case temperatures from -40 $^\circ\text{C}$ to +90 $^\circ\text{C}.$

> Technical Data

Size			Unit	28	45	53
Displacement	Variable pump	$V_{g \max}$	mL/r	29	45	52
Displacement	Boost pump(∆p=2MPa) ¹⁾	V_{gSP}	mL/r	5.8	8.6	8.6
	Large displacement Boost pump(∆p=2MPa)	$V_{g\text{SP}}$	mL/r	13.8	13. 8	13. 8
Speed	Maximum speed at $V_{g max}$	N max cont	rpm	3900	3300	3300
	Limit maximum ²⁾	n min limit	rpm	4200	3550	3550
	Intermittent maximum ³⁾	N max interm	rpm	4500	3800	3800
	Minimum	N min	rpm	500	500	500
Flow	At n _{max cont} and Vg _{max}	q v max	L/min	113	149	172
Power ⁴⁾	At n _{max cont} and V _{g max} ,∆p=30MPa	P _{max}	KW	57	75	86
Torque ⁵⁾	At V _{g max} ,∆p=30MPa	T max	Nm	139	215	248
	At V _{g max} ,∆p=10MPa	Т	Nm	46	72	83
Moment of inertia of drive shaft		J	Kgm ²	0. 0017	0. 0033	0. 0042
Max. angular acceleration ⁴⁾			rad/s ²	5500	4000	3500
Case volume		V	L	0. 64	0. 75	0. 75
Weight (withou	it through drive)	m	KG	25	27	29

1) Factory default

2) Power at half corner power (e.g. at $V_{g max}$ and $P_n/2$)

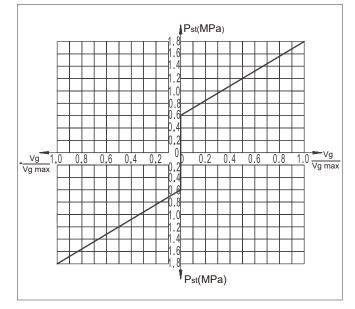
3) At high-speed no-load operation; at overspeed, Δp =7-15MPa and Vg max; at reverse peak load, Δp <30MPa, t<0.1s

4) Without boost pump

5) Only valid for a single pump

> Specification Calculation

Flow	$q_v = \frac{V_{9} \cdot n \cdot \eta_v}{1000}$	[L/min]	V _g = Displacement,mL/r
			Δp = Differential pressure,MPa
Torque	$T = \frac{V_{\text{g}} \cdot \Delta p}{2 \cdot \pi \cdot \eta_{\text{mb}}}$	[Nm]	n = Speed,rpm
	2•11•1 mh		η_v = Volumetric efficiency
	2π∙Τ•η Ϥ⊶Δρ		η_{mh} = Mechanical-hydraulic efficiency
Power P = $\frac{2\pi \cdot T \cdot n}{60000} = \frac{q_{v} \cdot \Delta p}{60 \cdot \eta_{t}}$	[KW]	η _t = Total efficiency	



HD - Pilot Pressure Control

Dependent on the difference between the pilot pressure P_{st} (at ports Y1 and Y2) of two control lines, the variable cylinder of the pump obtains control pressure via the HD controller so that the swashplate moves to infinitely adjust the displacement. Each control line corresponds to one flow direction.

HD1: without inlet filter

HD3: with inlet filter (standard)

Vg Vg max Displacement at Pst-=0.6MPa Displacement at Pst=1.67MPa

Pilot pressure at port Y1 and Y2

Pst-=0.6-1.67MPa

Start of control 0.6MPa

End of control 1.67MPa (maximum displacement Vg max)

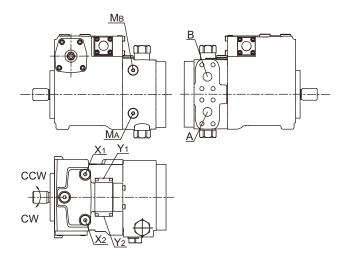
Note:

The HD controller must be unloaded to the neutral position with the external pilot control device on the reservoir.

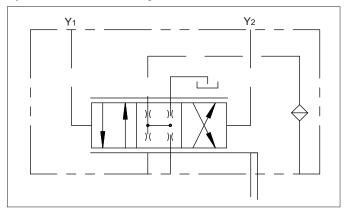
Thread, control port		
14x1.5−6H	ED seal	
9/16-18UNF-2B	ED seal	
9/16-18UNF-2B	Corner seal	

The spring at the center of the pilot control device is not a safety device.

The spool may get stuck at any position due to contamination of the control device, such as hydraulic fluid pollutant, wear debris and foreign matters in the system, etc.

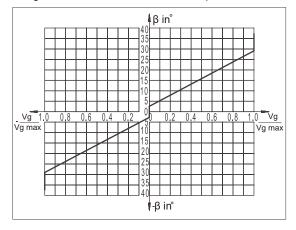

In this case, the pump flow no longer observes the operator's instructions.

- Make sure the driven device can promptly reach a safety state (e.g. stop) with the emergency stop module.


- Always observe the cleanliness level according to ISO 4406: $20/18/15 (< 90 \degree C)$ or $19/17/14 (> 90 \degree C)$

Correlation of Direction of rotation, Control and Flow direction

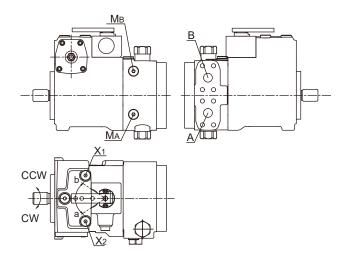
Direction of rotation (viewed on drive shaft)				
	Pilot Pressure	Control Pressure	Flow Direction	Working Pressure
CW	Y 1	X1	A to B	Мв
	Y2	X 2	B to A	MA
ccw	Y 1	X1	B to A	MA
	Y2	X2	A to B	Мв


Hydraulic schematic diagram, HD3

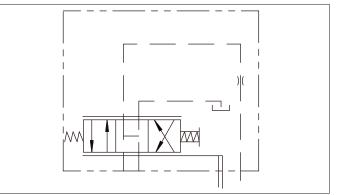
> HW - Mechanical Servo Control

Dependent on the moving direction a or b of the control lever, the variable cylinder of the pump obtains control pressure via the HW controller so that the swashplate moves to infinitely adjust the displacement. Each moving direction of the control lever corresponds to one flow direction.

Swivel angle β of control lever: Start of control β =3° End of control β =29°(maximum displacement Vg max) Mechanical limit: ±40°


The maximum required torque at the control lever is 170 Ncm. The rotation of HW control lever must be limited with an external position sensor (set point device).

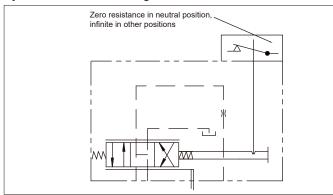
Note:


When there is no torque on the HW control lever, spring centering enables the pump to move automatically to the neutral position $(V_g=0)$ (independent of swivel angle).

Correlation of Direction of rotation, Control and Flow direction

Direction of rotation (viewed on drive shaft)				
	Pilot Pressure	Control Pressure	Flow Direction	Working Pressure
cw	а	X 2	B to A	MA
011	b	X 1	A to B	Мв
ccw	а	X 2	A to B	Мв
	b	X 1	B to A	MA

Hydraulic schematic diagram,HW

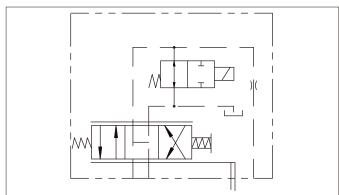

> HW - Mechanical Servo Control

Variant I:With Neutral Position Switch, HWL

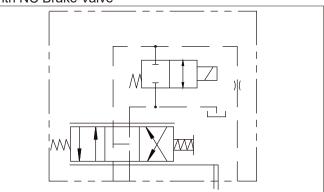
The neutral position switch is closed when the control lever on the HW control valve is in its neutral position. The switch opens when the control lever is moved out of the neutral position in either direction. The neutral position switch protects the systems that required zero flow under certain working conditions, such as starting the engine.

Technical data, neutral position switch		
Switching capacity 5A/12V&3A/24V		
Type of connector	AMP DJ7021-1.8-20	

Hydraulic schematic diagram,HWL

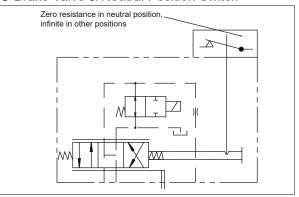

Variant II:ith Brake Valve Switch, HWO/HWC

with normally open brake valve; brake valve actuated when de-energized HWC:

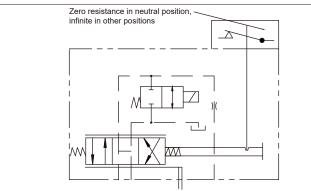

with normally closed brake valve; brake valve actuated when energized

Technical data, solenoid	HWO(C)1	HWO(C)2
Voltage	12V DC±1.8V	24V DC±3.6V
Nominal resistance(20°C)	9Ω	36 Ω
Rated power	18W	18W
Minimum required current	1. 5A	0. 75
Type of connector	DEUTSCH	DT04-2P
Duty cycle	100%	
Type of protection	IP	67

Hydraulic schematic diagram,HWO With NO Brake Valve



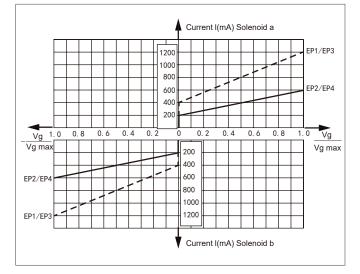
Hydraulic schematic diagram,HWC With NC Brake Valve



Variant III:With Brake Valve & Neutral Position Switch, HWOL/HWCL

Hydraulic schematic diagram, HWOL With NO Brake Valve & Neutral Position Switch

Hydraulic schematic diagram, HWCL With NO Brake Valve & Neutral Position Switch



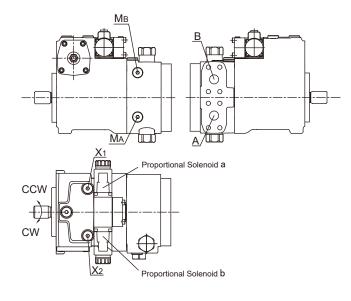
> EP - Electric Control with Proportional Solenoid

Dependent on the preset current I of the two proportional solenoids (a and b), the variable cylinder of the pump obtains control pressure via the EP controller so that the swashplate moves to infinitely adjust the displacement. Each proportional solenoid corresponds to one flow direction.

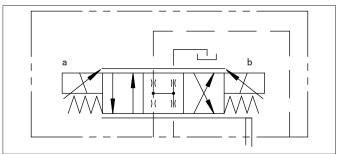
Technical data, solenoid	EP1/EP3	EP2/EP4
	EF1/EF3	EFZ/EF4
Voltage	12V DC±20%	24V DC±20%
Start of control Vg0	400mA	200mA
End of control Vg max	1200mA	600mA
Current limit	1. 54A	0. 77A
Nominal resistance (20°C)	5.5Ω	22. 7 Ω
Dither frequency	y 100Hz	
Type of connector	DEUTSCH DT04-2P	
Duty cycle	100%	
Type of protection	IP	67

EP1\EP2: without inlet filter (Not for new projects!) EP3\EP4: with inlet filter (standard)

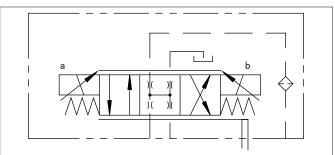
Note:


The spring at the center of the pilot control device is not a safety device. The spool may get stuck at any position due to contamination of the control device, such as hydraulic fluid pollutant, wear debris and foreign matters in the system, etc.

In this case, the pump flow no longer observes the operator's instructions. - Make sure the driven device can promptly reach a safety state (e.g. stop) with the emergency stop module.


- Always observe the cleanliness level according to ISO 4406: 20/18/15 (< 90 $^\circ C)$ or 19/17/14 (> 90 $^\circ C)$

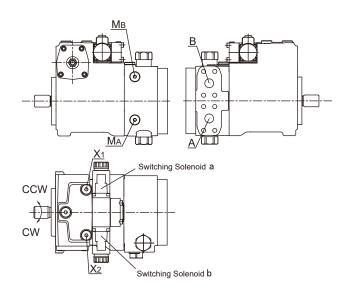
Correlation of Direction of rotation, Control and Flow direction


Direction of rotation (viewed on drive shaft)				
	Proportional Solenoid	Control Pressure	Flow Direction	Working Pressure
CW	а	X 1	A to B	Мв
000	b	X 2	B to A	MA
CCW	а	X 1	B to A	MA
	b	X 2	A to B	Мв

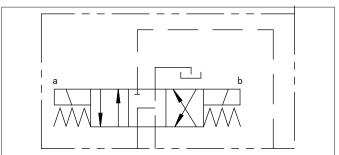
Hydraulic schematic diagram, EP1/2

Hydraulic schematic diagram, EP3/4

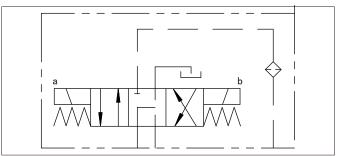
> EZ - Electric Control with Switching Solenoid


By switching on or off the switching solenoid a or b, the control cylinder of the pump obtains control pressure via the EZ controller so that the swashplate realizes adjustment between Vg=0 and Vg max. Each solenoid corresponds to one flow direction.

Technical data, solenoid	EZ1/3	EZ2/4
Voltage	12V DC(±20%)	24V DC(±20%)
Neutral position Vg=0	断电	断电
Position Vg max	通电	通电
Nominal resistance(20°C)	5.5Ω	21.7Ω
Rated power	26. 2W	26.5W
Minimum required current	1. 32A	0. 67A
Type of connector	DEUTSCH DT04-2P	
Duty cycle	100%	
Type of protection	IP67	


Standard: switching solenoid without manual emergency control. The manual emergency control realized by returning spring may be provided as required.

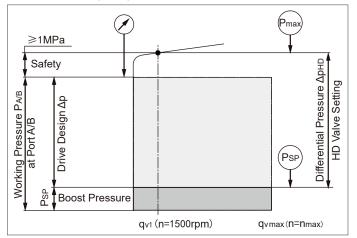
Correlation of Direction of rotation, Control and Flow direction


Direction of rotation (viewed on drive shaft)				
	Proportional Control Flow Working Solenoid Pressure Direction Pressure			
CW	а	X 2	B to A	MA
011	b	X1	A to B	Мв
ccw	а	X 2	A to B	Мв
	b	X 1	B to A	MA

Hydraulic schematic diagram, EZ1/2

Hydraulic schematic diagram, EZ3/4

High-pressure Relief Valve


Setting range

High-pressure relief valve,	Differential pressure
direct operated (size 28/45/53)	setting Δphp
Sotting range value 2	36MPa
Setting range valve 2	38MPa
∆ p=35−45MPa	40MPa
	42MPa
	44MPa
Setting range valve 3	26MPa
	28MPa
∆ p=25−35MPa	30MPa
	32MPa
	34MPa
Setting range valve 4	10MPa
	12MPa
∆ p=10−25MPa	14MPa
	16MPa
	18MPa
	20MPa
	22MPa
	24MPa
Setting range valve 5	26MPa
$\Delta p=25-35MPa$	28MPa
2 p-25 55101Fa	30MPa
	32MPa
	34MPa
Setting range valve 6	10MPa
$\Delta p=10-25MPa$	12MPa
2 p=10 20101 a	14MPa
	16MPa
	18MPa
	20MPa
	22MPa
	24MPa
Setting range valve 7	36MPa
$\Delta p=35-45MPa$	38MPa
	40MPa
	42MPa
	44MPa

Standard differential pressure setting.

Values when no special remarks are made when ordering.

Pressure setting diagram

Note: The high-pressure relief valve is set at n =1500rpm and Vg max (qv1). Hint: boost pressure 2MPa, working pressure 29MPa Working pressure PA/B - Pressure PSD

= differential pressure △php (29-2=27MPa)

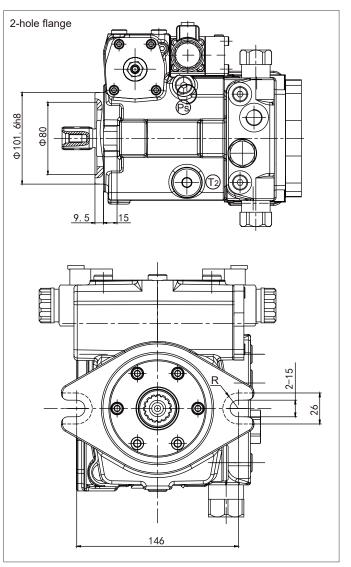
Bypass function

Valves 5/6/7 have the bypass function, The bypass function is only intended for short-term operation at reduced displacement, for example to tow a vehicle out of a danger zone.

> Pressure Cut-off Valve, D

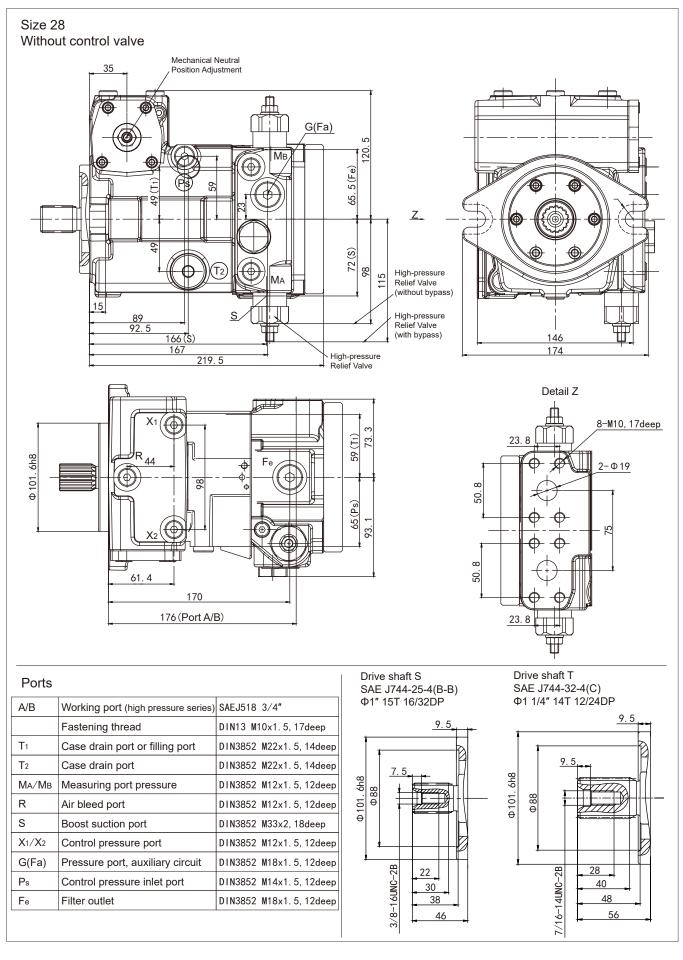
The pressure cut-off is a pressure control which adjusts the displacement of the pump to $V_{g\mbox{ min}}$ after the set pressure is reached.

The pressure cut-off valve prevents the operation of the high-pressure relief valve during acceleration or deceleration.

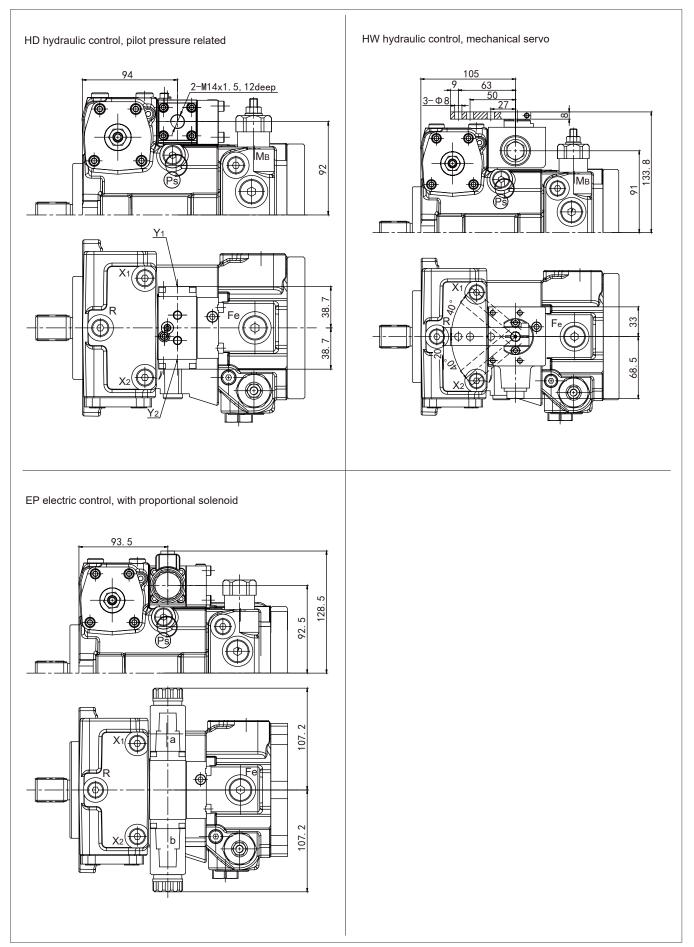

The high-pressure relief valve protects against pressures occurring during fast swiveling of the swashplate and maximum pressure in the system. The setting range of the pressure cut-off valve may be anywhere within the entire working pressure range.

However, the range must be set 3 MPa lower than the setting of the high-pressure relief valve.

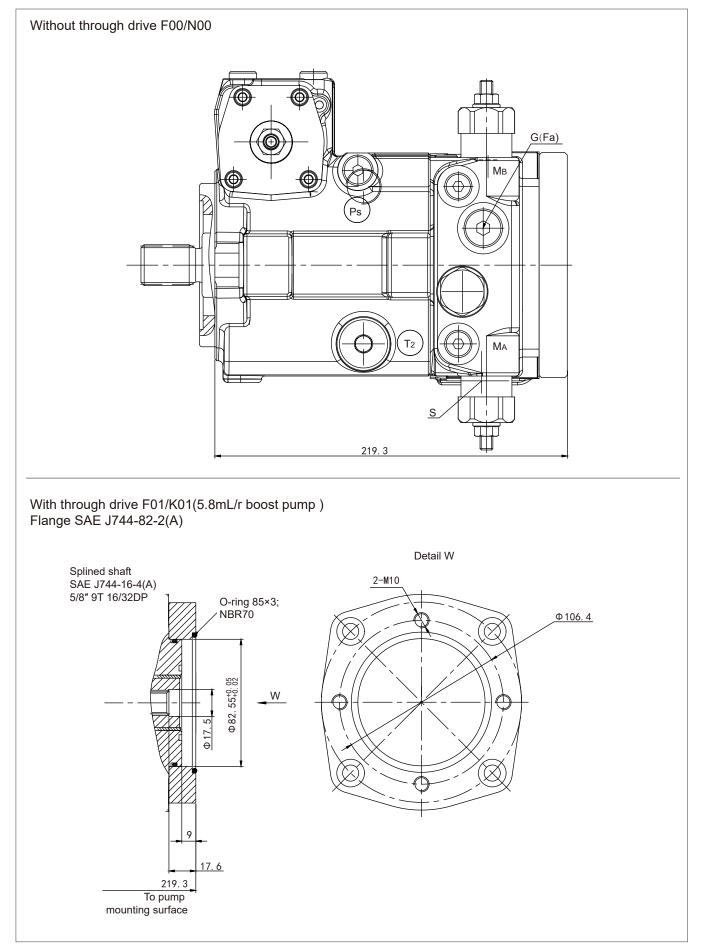
> Mechanical Stroke Limite, M

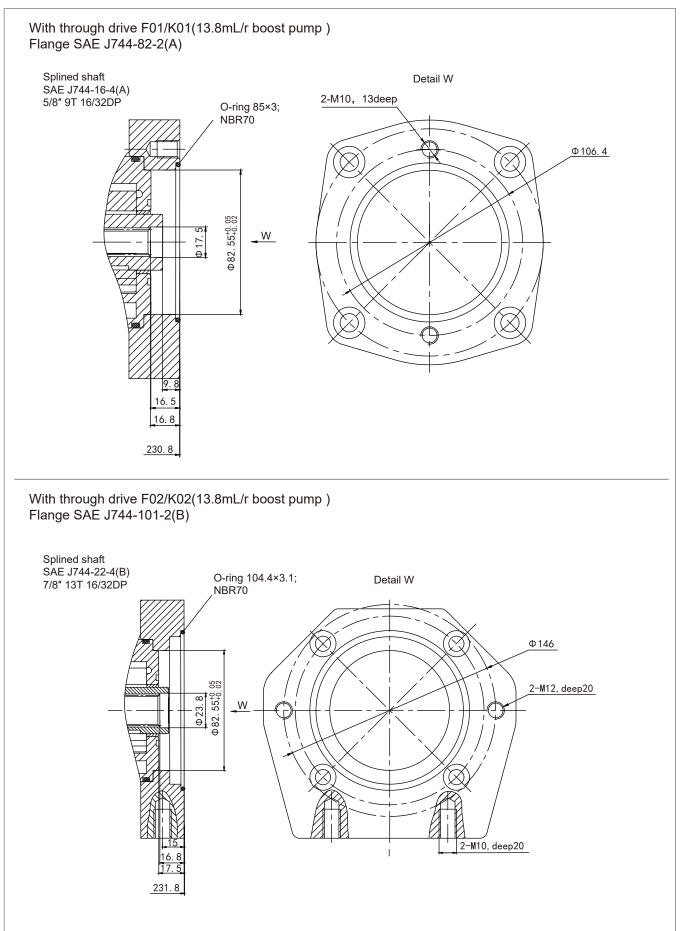

The mechanical stroke limiter is an auxiliary function for continual reduction of the maximum displacement of the pump, regardless of the control device used.

Two adjusting screws are used to limit the stroke of the stroking cylinder and thus the maximum swivel angle of the pump.

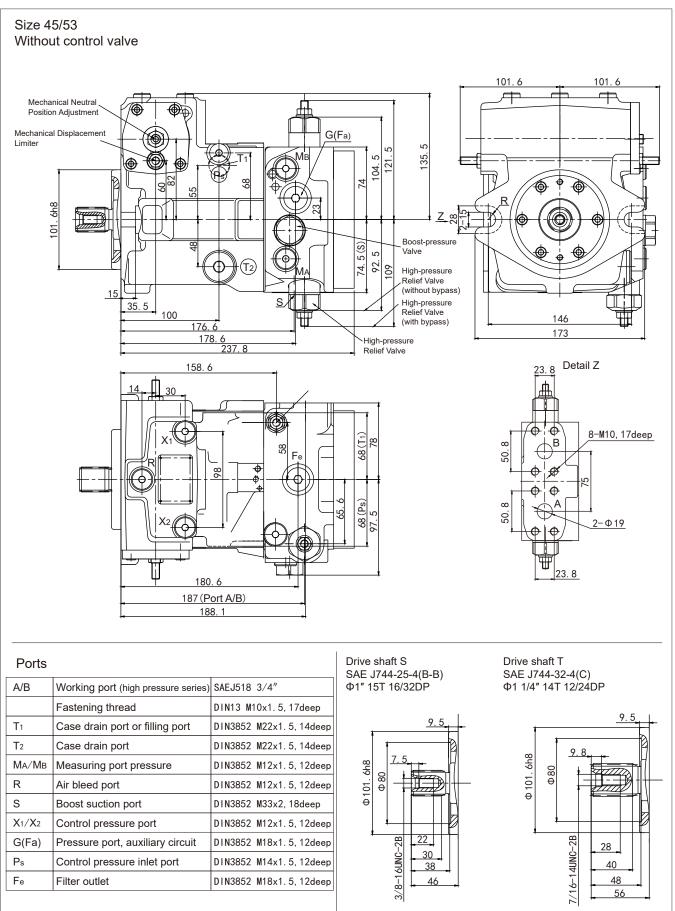

ΗΥΤΕΚ

> Dimensions

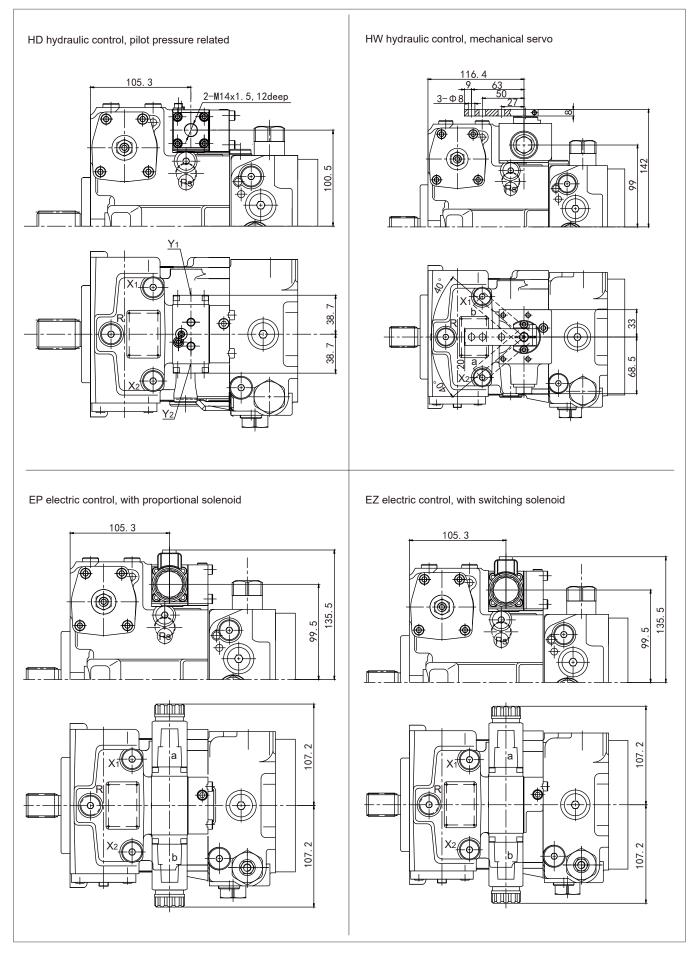

> Dimensions



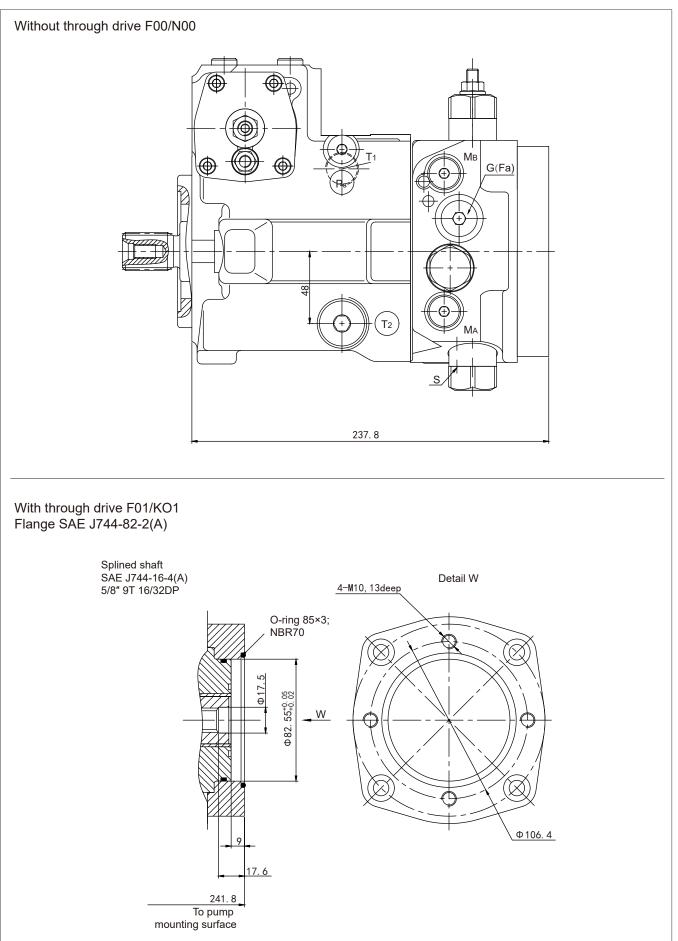
Dimensions



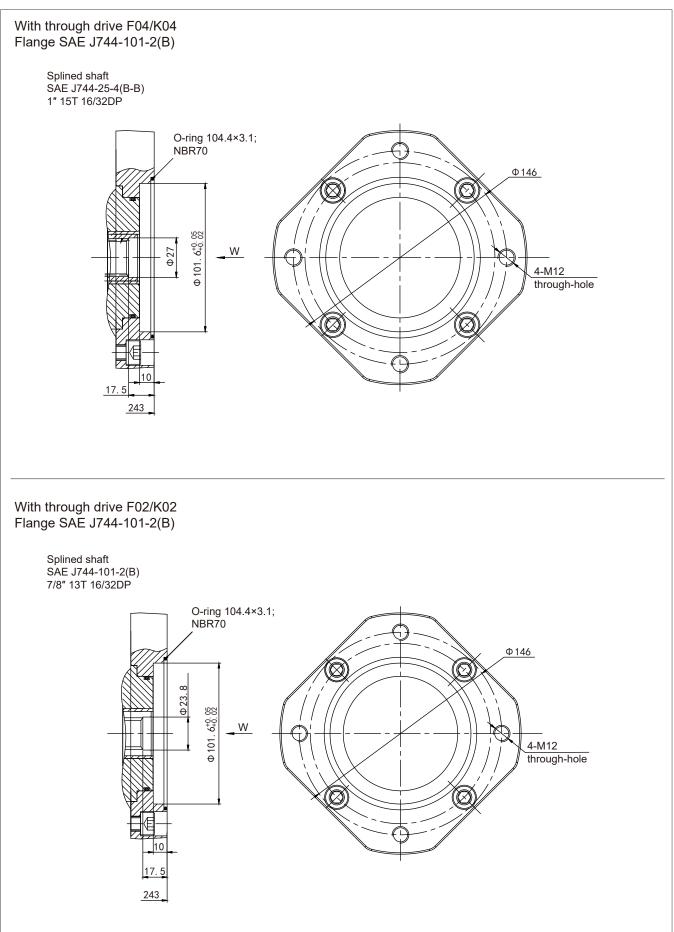
> Dimensions



Dimensions



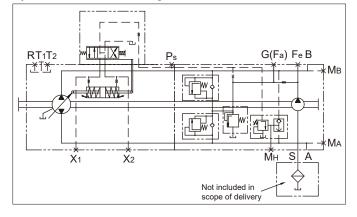
> Dimensions



> Dimensions

Dimensions

ΗΥΤΕΚ

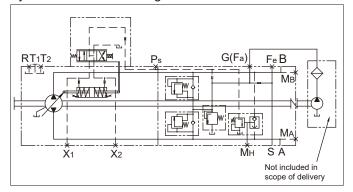

> Filtration

Standard: Filtration in Boost Pump Suction Line,S

•	
Standard type (preferred)	
Type of filter :	filter without bypass
Recommendation:	with contamination indicator
Flow resistance at filter element: V=30mm²/sष्ठर, n=n _{max} V=1000mm²/sष्ठर, n=n _{max}	
Pressure at suction port S: V=30mm²/sಾ寸, n=n _{max} Cold start (V=1600mm²/s雨寸, n≤1000rpm	

The filter is not included in the scope of delivery.

Hydraulic Schematic Diagram-Standard, S



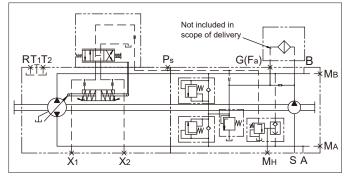
Variant I:External Fluid Supply,E

This version is used for models without integrated boost pump, N00 or K... Port S plugged, fluid supply from port Fa or Fa1.

Filter arrangement: separately installed to ensure stable functioning and fluid cleanliness level at port F_a or F_{a1} (see "Technical Data - Filter").

Hydraulic Schematic Diagram-Variant I, E

Variant II:Filtration in Boost Pump Pressure Line,

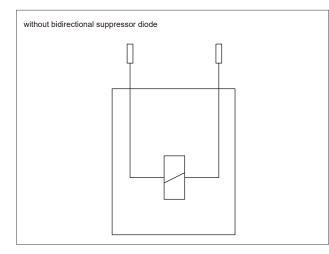

with Ports for External Boos	St Circuit Filtration, D
Filter inlet:	port Fe
Filter outlet:	port Fa
Type of filter:	
Filters with hypers are not recommended	

- Filters with bypass are not recommended

- Filters with contamination indicator are recommended

The filter is not included in our scope of delivery.

Hydraulic Schematic Diagram-Variant II,D

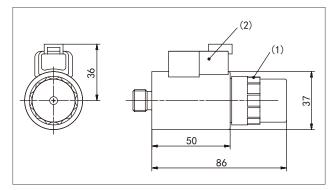


Connector for Solenoids

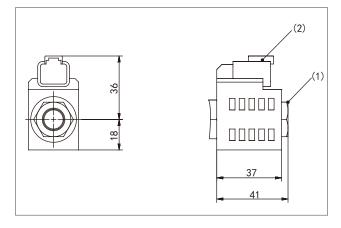
DEUTSCH DT04-2P-EP04, 2-pin Molded, without bidirectional suppressor diode_____P

The following type of protection ensues with the installed mating connector: IP67(DIN EN 60520) IP69K(DIN 60050-9)

Switching symbol



Mating connector DEUTSCH DT06-2S-EP04


Consisting of	DT designation
1 housing	DT06-2S-EP04
1 wedge	W2S
2 sockets	0462-201-16141

The mating connector is not included in the scope of delivery.

With emergency start and spring reset for Solenoid(EP/EZ)

Brake Valve Solenoid (HWC/O)

Notice

Manual emergency operation (emergency start) can be used in case of electrical system failure.

If necessary, you can change the position of the connector by turning the solenoid.

The position of the connectors varies of delivery.

> Installation instructions

General

The axial piston unit must be always be filled with hydraulic fluid and air bled during commissioning and operation.

This must also be observed following a longer standstill as the system may empty via the hydraulic lines.

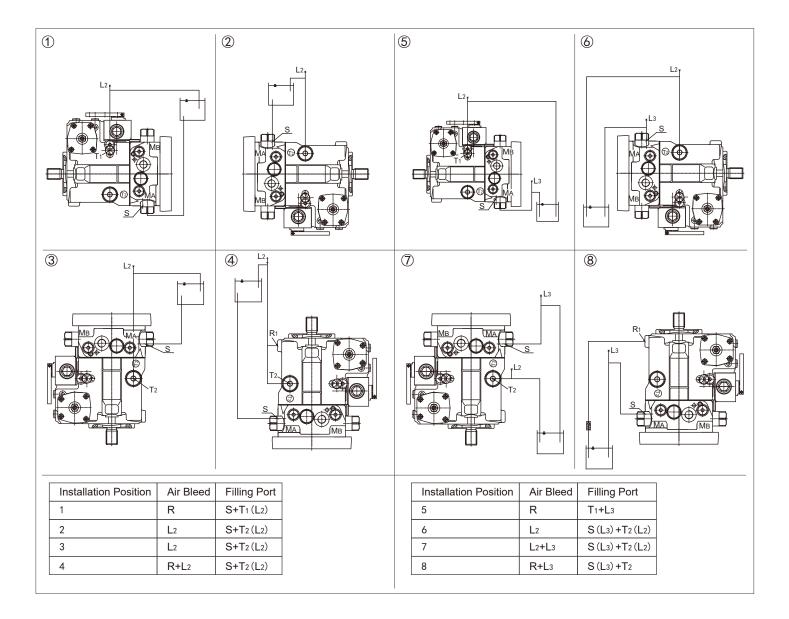
The leakage in the housing must be directed to the reservoir via the highest drain port.

The minimum suction pressure at port S must not fall below 0.08 MPa absolute pressure (or 0.05 MPa absolute pressure at cold start).

Under all operating conditions, the suction line and case drain line must flow into the reservoir below the minimum fluid level.

Installation positions

See the examples below. Other installation positions may be provided as required.


Below-reservoir installation (standard)

Pump below the minimum fluid level of the reservoir. Recommended installation positions: 1 and 2.

Above-reservoir installation

Pump above the minimum fluid level of the reservoir. Do not exceed the maximum permissible suction height h_{max} =800mm $_{\circ}$. Recommendation for installation position 8 (shaft upwards):

Draining inside the housing may be prevented by installing a check valve (cracking pressure 0.05 MPa) in the drain line.

HP4VC | Piston Pump

ΗΥΤΕΚ

HP4VC | Piston Pump

ΗΥΤΕΚ

Since 2002, Over twenty years of deep cultivation in the field of hydraulic Solutions

HYTEK is a high technology enterprise integrating R&D, production, sales and serviceof hydraulic power products. Provides professional hydraulic transmission control products and solutions for construction machinery, road machinery, material handling machinery, agricultural and forestry machinery, industrial equipment and other fields. After more than 20 years of continuous R&D, technological innovation, market development and application services, technical level and the scale of production and sales have been on the forefront of the industry. Hytek has been committed to helping the development of subdivided industries with innovative hydraulic technology, "focusing on the challenges and pressures of customers, providing competitive products and solutions, reducing costs and increasing efficiency for customers, and continuously creating maximum value".

Product Series

Please visit the official website / follow WeChat for more information: www.hytek.cn/en

HYTEK Power Co.,Ltd.

No.156,West Yuele Street,Lucheng District, Wenzhoucity 325029,Zhejiang, CHINA Email: globalsales@hytek.cn HYTEK POWER All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights. The data specified within only serves to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information.

The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Version No.HYTEK-REV1.0 08/24

No further notifications will be given for any changes in the contents or specifications of this manual.